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A new absorbing boundary condition using an absorbing layer is presented for ap-
plication to finite-difference time-domain (FDTD) calculation of the wave equation.
This algorithm is by construction a hybrid between the Berenger perfectly matched
layer (PML) algorithm and the one-way Sommerfeld algorithm. The new prescription
contains both of these earlier ones as particular cases, and retains benefits from both.
Numerical results indicate that the new algorithm provides absorbing rates superior
to those of the PML algorithm. © 2000 Academic Press
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1. INTRODUCTION

Absorbing boundary conditions (ABC) are routinely used in electromagnetic simulatio
to minimize the computer resources required for modeling an open system [5]. Two clas
of algorithms are currently in use. The first class uses a discretized approximation of
wave equation at the boundary which is applied only to the waves leaving the computatic
domain (outgoing waves); such algorithms are called “one-way” ABC. The other class u
an absorbing layer to absorb the outgoing waves at the boundary and is widely used ir
form of the Berenger perfectly matched layer (PML) ABC [1]. In contrast with the one-we
ABC, the absorbing layer equations treat the waves equally, regardless of their directio
propagation. The advantage of the PML over the one-way ABCs is its flexibility: one m
vary the size of the absorbing layer as well as the profile of the absorption coefficient (dri
by a numerical conductivity) in the layer in order to optimize the absorption efficienc
However, the PML algorithm is known to give poor performance when a layer of only
few cells is used, because of “numerical reflections” [1, 6]. In contrast, one-way AB
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offer no (or very little) flexibility, but are very efficient at absorbing waves on a single-ce
boundary.

In this article, we show that it is possible to construct a hybrid algorithm between
one-way and an absorbing layer ABC, retaining the advantages of both. For simplic
we restricted ourselves to the one-dimensional case in the first part of the article. Usir
mathematical condition applying to the FDTD wave equation derived in [4], we derive
recursion relation linking the numerical conductivities in a PML layer. Later in the articls
we show from numerical results that the numerical reflections observed with the P!
algorithm are due to its violation of this relation. Then, a more general form for a new AE
is given which contains the PML ABC, as well as the Sommerfeld (or first-order Engqu
and Majda [3]) ABC as particular cases. Using this form, a new ABC is proposed. Tt
ABC is one-way in the sense that it treats outgoing and ingoing waves differently, anc
restricts to the Sommerfeld ABC if the layer is one cell thick. However, as with the PM
ABC, it is also possible to absorb the waves in an arbitrary number of layers to obt:
higher efficiency. Finally, we show the extension of the algorithm to higher dimension.
numerical comparison s given between this ABC, the Sommerfeld or second-order Engg
and Majda ABC, and the PML algorithm, in one and in two dimensions.

2. AMATHEMATICAL RELATION FOR THE FDTD WAVE EQUATION

2.1. In Vacuum

For a FDTD [2] discretization of a wave equation in vacuum, written as
i+1 i i+1/2 i+1/2
E\™ = «E} + 1B 73 — BB} 713 1)

wherei is the time index, and is the space index, we have shown in [4] (see Appendix
that the coefficients, 81, andg; are linked by

a = 1+ By — B, for waves traveling forward (2)
and
a = 1— By + B, for waves traveling backward. 3)

We also showed in the same reference, that Eq. (1) is the FDTD discretization of
differential equation

oE oB
— =ogE 4+ — B 4
ap = CF + ™ + o (4)
because it can be written as
i+1 i i+1 i i+1/2 i+1/2 i+1/2 i+1/2
Ef"-E _ or Bl +E n Bji12 — Bj~1p2 +on Bji12+Bj 12 5)

ot 2 X 2
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with

2(/a—1
O = —
St\a+1

1 1<ﬁ1+,32) ©)
Sx  St\ a+1

o _E(ﬁl—ﬁz)
BT 5t\ at1 )

2.2. In An Absorbing Medium

In an absorbing medium, the amplitude of the wave changes as it propagates. Assu
wave propagating backward and an attenuation fa¢teo that the amplitude of the wave
is multiplied byt; each time the wave propagates between grid locatjopsl/2 andj.
Assuming the transmission of a Heaviside step of amplitude H, we find, after an infin
time, that

th =Olth + B1H —ﬂthjtj,1/2 (7)
so that
a=1- ? + Batj_1/2. (8)
j

Symmetrically, for a wave propagating forward, we have

B2
a=1+ﬂltj+l/2_?- (9)
i
3. THE PERFECTLY MATCHED LAYER (PML) TECHNIQUE,
A RELATION LINKING THE o

Consider first the existing PML technique [1] to understand the implications of tt
preceding relations. In one dimension, the basic equation of the PML technique is

= 9B
o 4B 10
TR (10)

which is Eq. (4) withog = 0 andog = 0. Once discretized in centered finite-difference
form, this becomes

Ej™ = «Ej + 8(B}112 - B'T2), (11)
with
l4+o0a, B a (12)
= od, = —.
¢ §X

If we directly discretize the differential equation, we have

st
a=-——— 13
1-o6t/2° (13)

whereas if we integrate the differential equation before discretizing it, as in the origir



514 JEAN-LUC VAY

Berenger paper, we have

1 — exp(odt)
. .

a= (14)

Assuming now a wave propagating backward, applying (8) With 81 = 82, we obtain
that

1
ot:l-l—ﬂ(tj_l/z—t), (15)
i
giving
ti-y2 — g

This gives us arecursion relation on thewhich provides an additional constraint on the
PML condition and a rule for the progression of the coefficients inside the PML layer. T
coefficients can be chosen independent of each other; this is not the case éqgt, thieich
are linked to each other. This relation, which applies at the discretized level and ensure:
consistency of the algorithm at this level, is different from the @) = om(p/5)" (see
[1]), which givesab initio the dependency af with respect to the distangetraveled in
the layer at the infinitesimal level.

4. AHYBRID ALGORITHM BETWEEN PML AND ONE-WAY ABCS

4.1. In One Dimension

With the previous boundary condition, the limiting cage= 0 givess — oo andg = 0,
resulting in total reflection of outgoing waves.

We now force the algorithm, at the limit of complete absorption in one te#(0), to
converge to the one-way absorbing boundary condition (Sommerfeld ABC). For examj
at the lower bound of the computational domain for waves traveling backward:

| 25t . 25\ i
Elfl=(1- = )JE + [ -—— ) B"Y3. 17
J ( 8t+8x) J+(8t+8x) 1+1/2 7

We construct a one-way absorbing medium in the form

oE oB
— =ogE+cg— B, 18
at OE + Eax +O’B ( )

which we discretize in centered finite-difference form with, a finite-difference in u, and
{)u, a finite average along u, as

A'E = 0g(E); + CeA*B + 0g(B)y, (19)
which we can also write as

E[*! = oE} +44:B]1Y2 - 4,872 (20)
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Heret; has the same meaning as in the preceding sectiongapg, and g, are three
constants to be determined and are linkedgocg andog by

2(1l—«
0E=_8t<1+a> (21)

_ X [(tp+ B2
%"&< 1+a ) (22)

_2(tipr—p2
aB_St(l+a>' &)

For this equation, the analysis with the Heaviside step transmission after an infinite ti
(see Appendix) gives

a=1-pB1+tj_12P. (24)

Fort;_1» = 0 andt; = 1 (complete absorption in one cell), we force (20) to reduce t

(17), givinga = 1 — By andp; = %

On the other hand, fdf_;,, = t; = 1 (vacuum), we want the equation to converge to

i i, Ot/ it
Ei*t=E| + X (B}HZ — B}fléz) ; (25)
thatis,fy = B, = L.
Noting that; 2L = & (14 22, one solution satisfying these two limits is

ot oX — 6t

ﬂ1=(1+< )(1—tj—l/2)>
X X

88t dX + 8t (26)

Pa=

In summary, and applying the same analysis for the fizldhe new hybrid absorbing
layer is now defined as (for waves traveling backward):

/2 2
E|+l (1 Bie +tj_ 1/2ﬂ2E) i+t B B;jj/z BoE B']*%Z

B;iﬁ (1 — Big +tj-1B28) Bj:]_/z +tj_1/2B18E} — BoBE} 4

ot 86X — ot
=21 1t
B1iE 5X( + (5x+8t>( i 1/2)>

_at 1 X N
ﬂlB_(SX( +<5X+5t)( — - l))

ot
BoE = P = —

8X
0<t =<1

(27)
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This can, equivalently, be written

At = oge(E) + CeA*B + oes(B)x
_O'BB( t—i—CBAXE—I—O'BE(E)

hrie = 5% (1 <8x+8t>(1_tj_1/2)>
s

(28)
= 1 1—-ti_
BB +<8x+8t>( j 1))
BoE = B2 = &
O<t <1
with
2 —t_
J— _( Bie — tj—1/2P2€ > (29)
8t \ 2 — Bie +tj_12P2€
) ti
ce = 2 < iB1ie + Boe ) (30)
8t \ 2 — B1e +tj_1/2P2€
2 tj Bie — Bee )
OER = — 31
EB 8t<2—ﬂ1E +tj_1/2B2e 3D
and
2 —ti_
R __( Bie — tj—1P8 ) (32)
St \2— Big +tj_1828

Cg = 8X< tj_1/2B18 + B2B )
2— Pig +tj_1B28

S 2( tj_1/2B18 — B2 ) (34)
2— Pig +tj_1Bm

(33)

The algorithm for waves traveling forward is obtained by symmetry.

4.2. In Two Dimensions

The extension of the preceding system to more than one dimension is done, as with
PML ABC, by decomposing the equations along the axes as follows:

A'Ezx = 0ee(Ezx)t + CEA*By + 0es(By)x
A'E,y = —AYB
E, = Exx+ Ezy (35)
A'By = ogg(By)t + C8A*E; + ope(E;)x
A'By = —AVE;.
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4.3. Differences with the Berenger PML

The first equation of (35) has the same form as (4) at the infinitesimal limit. This mee
that, for the time integration of E, there is an additional term in the formg® in our
hybrid ABC compared to the Berenger PML. At the discrete level, our algorithm formally

Ei*t = «El + £1B{ 175 — B[ 5. (36)
while the Berenger PML formally is
i+1 i i+1/2 i+1/2
Ei"' =oE| + ,B(Blj+1/2 - Blj71/2)~ (37)

For one iteration, our algorithm is computationally slightly more costly than the Berenc
PML; however, it produces significantly less reflection, as shown in the next section.

5. NUMERICAL RESULTS

5.1. Coefficients of Reflection in 1D

Measurements of the coefficients of reflection in one dimension have been done, follow
the same procedure used in [4, Section 3.1.1], using the Harris function as the shape f:
of a sinusoidal incident wave. The mesh spacing is defindd;abe size of the absorbing
layer is &x.

For the PML case, we used the same progression of conductivity as in [1],

n
o (p) = om (g) , (38)
withom = 4/8X, A = 58X, n = 1, 2, 3, or4, anc the length of penetration in the absorbing
layer. In terms of mesh sizp,= j§x with j = 0 at the interface, and we define the discrete

values ofo to be
e\
oj =O’m<u> , (39)

producing, at the locatiopsx, a coefficient of transmissian given by
) = e 2, (40)

These coefficients of transmission were then used to compute a new set of coefficien
conductivityo (adjusted) with the relation linking the defined earlier, that is,

ty12 — tl

oj = ——,
AX

where the reader is reminded thathas now its origin at the vacuum-absorbing layer
interface and increases in the absorbing layer. Tlags&ere used to run another case
named “PMLe (adjusted)” and were also used to compute the coefficients for the hybl
algorithm case. A case using the one-way Sommerfeld ABC was also run as a referen

The results are given in Fig. 1 for all four boundary conditions (one-way, PML, PML
o (adjusted), hybrid) fon = 1, 2, 3, and 4. For all values of the adjustment of the gives
better results than the PML without adjustment, and the hybrid algorithm considera
reduces the amount of reflection in comparison with the others.

(41)



518 JEAN-LUC VAY

e Hybrid .
187 | vo S 4 1E7

r n=3 n=4 I

01
0.01
1E3

1E-4

L e— ..
1E5 ¥ Yo e e e 1ES
v e ..
1E6 T T 4166
wg o T T 4 167
1E8 L L L L €8
L3 10 Ao 100 d 10 5 100
X

FIG. 1. Coefficient of reflection as a function of wavelength obtained for four ABCs with 1, 2, 3, 4
(n has no significance for the one-way ABC).

5.2. Coefficients of Reflection in 2D

We have measured the coefficient of reflection for a pulse of shape given by the Ha
function

10— 15co$27Lt) + 6 cog4rLt) — cog6rLt) when O<t < L/C
Ht) = { % (42)

0 otherwise

wherec, the wave speed, was normalized to 1, and wherthe support of the function,
was given the value 3&. The size of the test domain was 3882005y with an additional
surrounding absorbing layer of thicknes&x8Here,sx = §y = 1. A computation on a
reference grid of size 26@+x200y was also performed. Let,Bbe the field computed on
the test grid and E the field computed on the reference grid. The initial signal on bot
grids was introduced so that@5,100)= E,(100,100)= H(t). The time stept was set to
0.55x, and the simulation was stopped at 2005t = 100. Then the coefficient of reflection
was computed on agrid 76*201 by R(0:75, 0:28(,(0:75, 0:200)- E,(100:175, 0:200).
The calculations were made for the PML, the PMi[adjusted), and the hybrid ABCs, using,
in the direction transverse to the absorbing boundary, the same coefficients as those use
the 1-d numerical tests. The results at the boundary R(0, 0:200) are given in Fig. 2 fby

2, 3, and 4. Except for the case= 1 where the PMLs (adjusted) gives a smaller amount
of reflection than the hybrid ABC, the qualitative result found in the 1-d case, which is tt
the hybrid ABC gives better results than the PML4djusted or not), is obtained again.
3D plots of R(0:75, 0:200) are given in Fig. 3 (second-order Engquist and Majda, given
reference), Fig. 4 (PML), Fig. 5 (PMb{adjusted)), and Fig. 6 (hybrid), all for= 2. The
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FIG. 2. Coefficients of reflection at the boundary given by the PML, Péfladjusted), and hybrid ABCs.

FIG. 3. Reflected signal (in % of the maximum amplitude of the incident pulse measured at the same tit
given by the second-order Engquist and Majda ABC.

() ly

FIG. 4. Reflected signal (in % of the maximum amplitude of the incident pulse measured at the same tit
given by PML ABC for an 8-cell absorbing layer with= 2.
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FIG. 5. Reflected signal (in % of the maximum amplitude of the incident pulse measured at the same tir
given by the PMLe (adjusted) ABC for an 8-cell absorbing layer with= 2.

numerical reflection due to the PML ABC, as mentioned by previous authors [1, 6], in t
form of a front propagating normally to the boundary, is easy to identify in Fig. 4, while
can be seen in Fig. 5 and Fig. 6 that it is well damped using the Bkéidjusted) ABC or
the hybrid ABC, which gives the best results of all.

6. CONCLUSION

We have presented a new absorbing boundary condition that has the features of |
one-way ABC and PML ABC. Numerical tests show that it yields better results than a PN
ABC under the same conditions (same thickness of the absorbing layer and same fal
of the incident wave amplitude in the layer). This work is still somewhat preliminary, ar
a full mathematical analysis giving the optimized set of absorbing paramefgis the
layer is needed. Also, a possible improvement may be to take the second-order Engc
and Majda algorithm as the limit of the hybrid algorithm for absorption in one cell, instez
of the first-order one, as done in this paper. This implies the addition of a coefficie
&,in E; = E;x + £E,y, to be determined. Whether such a modification will improve the
algorithm and is worthwhile are open questions. This hybrid ABC has been implemen
in the code EMI2D developed at Ecole Polytechnique (Palaiseau, France) by J. C. Ad
A. Heron, and the author (used for laser-plasma interaction studies).

FIG. 6. Reflected signal (in % of the maximum amplitude of the incident pulse measured at the same tir
given by the hybrid ABC for an 8-cell absorbing layer witk= 2.
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APPENDIX: HEAVISIDE STEP ANALYSIS
We consider the discretized wave equation
i+1 i i+1/2 i+1/2
Ei™ =aE| + 1B{11)5 — 2B 1% (A1)

If we consider the propagation of a Heaviside step of amplitddeaveling forward, we
do not know the details of the response of the system for anysgi (82) but we know
from the properties of the wave equation that in vacuum, after an infinite time, all the valt
must have exactly relaxed to the valdefor the magnetic field and—H for the magnetic

field E (we haveE = —B for waves traveling forward), giving the relation (true after an
infinite time)
—H =—aH + g1H — B2H, (A.2)
and finally
a=1+p1— B (A.3)

The same analysis with waves traveling backward gives

a=1-p1+ B (A.4)
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