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A new absorbing boundary condition using an absorbing layer is presented for ap-
plication to finite-difference time-domain (FDTD) calculation of the wave equation.
This algorithm is by construction a hybrid between the Berenger perfectly matched
layer (PML) algorithm and the one-way Sommerfeld algorithm. The new prescription
contains both of these earlier ones as particular cases, and retains benefits from both.
Numerical results indicate that the new algorithm provides absorbing rates superior
to those of the PML algorithm. c© 2000 Academic Press
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1. INTRODUCTION

Absorbing boundary conditions (ABC) are routinely used in electromagnetic simulations
to minimize the computer resources required for modeling an open system [5]. Two classes
of algorithms are currently in use. The first class uses a discretized approximation of the
wave equation at the boundary which is applied only to the waves leaving the computational
domain (outgoing waves); such algorithms are called “one-way” ABC. The other class uses
an absorbing layer to absorb the outgoing waves at the boundary and is widely used in the
form of the Berenger perfectly matched layer (PML) ABC [1]. In contrast with the one-way
ABC, the absorbing layer equations treat the waves equally, regardless of their direction of
propagation. The advantage of the PML over the one-way ABCs is its flexibility: one may
vary the size of the absorbing layer as well as the profile of the absorption coefficient (driven
by a numerical conductivity) in the layer in order to optimize the absorption efficiency.
However, the PML algorithm is known to give poor performance when a layer of only a
few cells is used, because of “numerical reflections” [1, 6]. In contrast, one-way ABCs
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offer no (or very little) flexibility, but are very efficient at absorbing waves on a single-cell
boundary.

In this article, we show that it is possible to construct a hybrid algorithm between a
one-way and an absorbing layer ABC, retaining the advantages of both. For simplicity,
we restricted ourselves to the one-dimensional case in the first part of the article. Using a
mathematical condition applying to the FDTD wave equation derived in [4], we derive a
recursion relation linking the numerical conductivities in a PML layer. Later in the article,
we show from numerical results that the numerical reflections observed with the PML
algorithm are due to its violation of this relation. Then, a more general form for a new ABC
is given which contains the PML ABC, as well as the Sommerfeld (or first-order Engquist
and Majda [3]) ABC as particular cases. Using this form, a new ABC is proposed. This
ABC is one-way in the sense that it treats outgoing and ingoing waves differently, and it
restricts to the Sommerfeld ABC if the layer is one cell thick. However, as with the PML
ABC, it is also possible to absorb the waves in an arbitrary number of layers to obtain
higher efficiency. Finally, we show the extension of the algorithm to higher dimension. A
numerical comparison is given between this ABC, the Sommerfeld or second-order Engquist
and Majda ABC, and the PML algorithm, in one and in two dimensions.

2. A MATHEMATICAL RELATION FOR THE FDTD WAVE EQUATION

2.1. In Vacuum

For a FDTD [2] discretization of a wave equation in vacuum, written as

Ei+1
j = αEi

j + β1Bi+1/2
j+1/2− β2Bi+1/2

j−1/2 (1)

wherei is the time index, andj is the space index, we have shown in [4] (see Appendix)
that the coefficientsα, β1, andβ2 are linked by

α = 1+ β1− β2 for waves traveling forward (2)

and

α = 1− β1+ β2 for waves traveling backward. (3)

We also showed in the same reference, that Eq. (1) is the FDTD discretization of the
differential equation

∂E

∂t
= σE E + ∂B

∂x
+ σB B (4)

because it can be written as

Ei+1
j − Ei

j

δt
= σE

Ei+1
j + Ei

j

2
+ Bi+1/2

j+1/2− Bi+1/2
j−1/2

δx
+ σB

Bi+1/2
j+1/2+ Bi+1/2

j−1/2

2
(5)
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with

σE = 2

δt

(
α − 1

α + 1

)
1

δx
= 1

δt

(
β1+ β2

α + 1

)
(6)

σB = 2

δt

(
β1− β2

α + 1

)
.

2.2. In An Absorbing Medium

In an absorbing medium, the amplitude of the wave changes as it propagates. Assume a
wave propagating backward and an attenuation factort j , so that the amplitude of the wave
is multiplied byt j each time the wave propagates between grid locationsj + 1/2 and j .
Assuming the transmission of a Heaviside step of amplitude H, we find, after an infinite
time, that

t j H = αt j H + β1H − β2Ht j t j−1/2 (7)

so that

α = 1− β1

t j
+ β2t j−1/2. (8)

Symmetrically, for a wave propagating forward, we have

α = 1+ β1t j+1/2− β2

t j
. (9)

3. THE PERFECTLY MATCHED LAYER (PML) TECHNIQUE,

A RELATION LINKING THE σ

Consider first the existing PML technique [1] to understand the implications of the
preceding relations. In one dimension, the basic equation of the PML technique is

∂E

∂t
= σE + ∂B

∂x
, (10)

which is Eq. (4) withσE = σ andσB = 0. Once discretized in centered finite-difference
form, this becomes

Ei+1
j = αEi

j + β
(
Bi+1/2

j+1/2− Bi+1/2
j−1/2

)
, (11)

with

α = 1+ σa, β = a

δx
. (12)

If we directly discretize the differential equation, we have

a = δt

1− σδt/2, (13)

whereas if we integrate the differential equation before discretizing it, as in the original
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Berenger paper, we have

a = −1− exp(σδt)

σ
. (14)

Assuming now a wave propagating backward, applying (8) withβ = β1 = β2, we obtain
that

α = 1+ β
(

t j−1/2− 1

t j

)
, (15)

giving

σ j =
t j−1/2− 1

t j

δx
. (16)

This gives us a recursion relation on theσ j which provides an additional constraint on the
PML condition and a rule for the progression of the coefficients inside the PML layer. The
coefficientst can be chosen independent of each other; this is not the case for theσ j , which
are linked to each other. This relation, which applies at the discretized level and ensures the
consistency of the algorithm at this level, is different from the ruleσ(ρ) = σm(ρ/δ)

n (see
[1]), which givesab initio the dependency ofσ with respect to the distanceρ traveled in
the layer at the infinitesimal level.

4. A HYBRID ALGORITHM BETWEEN PML AND ONE-WAY ABCS

4.1. In One Dimension

With the previous boundary condition, the limiting caset j = 0 givesσ →∞ andβ = 0,
resulting in total reflection of outgoing waves.

We now force the algorithm, at the limit of complete absorption in one cell (t j = 0), to
converge to the one-way absorbing boundary condition (Sommerfeld ABC). For example,
at the lower bound of the computational domain for waves traveling backward:

Ei+1
j =

(
1− 2δt

δt + δx
)

Ei
j +
(

2δt

δt + δx
)

Bi+1/2
j+1/2. (17)

We construct a one-way absorbing medium in the form

∂E

∂t
= σE E + cE

∂B

∂x
+ σB B, (18)

which we discretize in centered finite-difference form with1u, a finite-difference in u, and
〈 〉u, a finite average along u, as

1t E = σE〈E〉t + cE1
x B+ σB〈B〉x, (19)

which we can also write as

Ei+1
j = αEi

j + t jβ1Bi+1/2
j+1/2− β2Bi+1/2

j−1/2. (20)
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Here t j has the same meaning as in the preceding section, andα, β1, andβ2 are three
constants to be determined and are linked toσE, cE andσB by

σE = − 2

δt

(
1− α
1+ α

)
(21)

cE = δx

δt

(
t jβ1+ β2

1+ α
)

(22)

σB = 2

δt

(
t jβ1− β2

1+ α
)
. (23)

For this equation, the analysis with the Heaviside step transmission after an infinite time
(see Appendix) gives

α = 1− β1+ t j−1/2β2. (24)

For t j−1/2 = 0 andt j = 1 (complete absorption in one cell), we force (20) to reduce to
(17), givingα = 1− β1 andβ1 = 2δt

δt+δx .
On the other hand, fort j−1/2 = t j = 1 (vacuum), we want the equation to converge to

Ei+1
j = Ei

j +
δt

δx

(
Bi+1/2

j+1/2− Bi+1/2
j−1/2

)
; (25)

that is,β1 = β2 = δt
δx .

Noting that 2δt
δt+δx = δt

δx (1+ δx−δt
δx+δt ), one solution satisfying these two limits is

β1 = δt

δx

(
1+

(
δx − δt
δx + δt

)(
1− t j−1/2

))
β2 = δt

δx
.

(26)

In summary, and applying the same analysis for the fieldB, the new hybrid absorbing
layer is now defined as (for waves traveling backward):

Ei+1
j = (1− β1E + t j−1/2β2E

)
Ei

j + t jβ1E Bi+1/2
j+1/2− β2E Bi+1/2

j−1/2

Bi+1/2
j−1/2 = (1− β1B + t j−1β2B)B

i−1/2
j−1/2+ t j−1/2β1B Ei

j − β2B Ei
j−1

β1E = δt

δx

(
1+

(
δx − δt
δx + δt

)(
1− t j−1/2

))
β1B = δt

δx

(
1+

(
δx − δt
δx + δt

)
(1− t j−1)

)
β2E = β2B = δt

δx
0 ≤ t j ≤ 1.

(27)
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This can, equivalently, be written

1t E = σE E〈E〉t + cE1
x B+ σE B〈B〉x

1t B = σB B〈B〉t + cB1
x E + σBE〈E〉x

β1E = δt

δx

(
1+

(
δx − δt
δx + δt

)(
1− t j−1/2

))
β1B = δt

δx

(
1+

(
δx − δt
δx + δt

)
(1− t j−1)

)
β2E = β2B = δt

δx
0 ≤ t j ≤ 1,

(28)

with

σE E = − 2

δt

(
β1E − t j−1/2β2E

2− β1E + t j−1/2β2E

)
(29)

cE = δx

δt

(
t jβ1E + β2E

2− β1E + t j−1/2β2E

)
(30)

σE B = 2

δt

(
t jβ1E − β2E

2− β1E + t j−1/2β2E

)
(31)

and

σBE = − 2

δt

(
β1B − t j−1β2B

2− β1B + t j−1β2B

)
(32)

cB = δx

δt

(
t j−1/2β1B + β2B

2− β1B + t j−1β2B

)
(33)

σB B = 2

δt

(
t j−1/2β1B − β2B

2− β1B + t j−1β2B

)
. (34)

The algorithm for waves traveling forward is obtained by symmetry.

4.2. In Two Dimensions

The extension of the preceding system to more than one dimension is done, as with the
PML ABC, by decomposing the equations along the axes as follows:

1t Ezx = σE E〈Ezx〉t + cE1
x By + σE B〈By〉x

1t Ezy = −1y Bx

Ez = Ezx+ Ezy (35)

1t By = σB B〈By〉t + cB1
x Ez+ σBE〈Ez〉x

1t Bx = −1yEz.
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4.3. Differences with the Berenger PML

The first equation of (35) has the same form as (4) at the infinitesimal limit. This means
that, for the time integration of E, there is an additional term in the form ofσB B in our
hybrid ABC compared to the Berenger PML. At the discrete level, our algorithm formally is

Ei+1
j = αEi

j + β1Bi+1/2
j+1/2− β2Bi+1/2

j−1/2, (36)

while the Berenger PML formally is

Ei+1
j = αEi

j + β
(
Bi+1/2

j+1/2− Bi+1/2
j−1/2

)
. (37)

For one iteration, our algorithm is computationally slightly more costly than the Berenger
PML; however, it produces significantly less reflection, as shown in the next section.

5. NUMERICAL RESULTS

5.1. Coefficients of Reflection in 1D

Measurements of the coefficients of reflection in one dimension have been done, following
the same procedure used in [4, Section 3.1.1], using the Harris function as the shape factor
of a sinusoidal incident wave. The mesh spacing is defined asδx; the size of the absorbing
layer is 8δx.

For the PML case, we used the same progression of conductivity as in [1],

σ(ρ) = σm

(
ρ

1

)n

, (38)

withσm = 4/δx,1 = 5δx, n = 1, 2, 3, or 4, andρ the length of penetration in the absorbing
layer. In terms of mesh size,ρ = j δx with j = 0 at the interface, and we define the discrete
values ofσ to be

σ j = σm

(
j δx

1

)n

, (39)

producing, at the locationj δx, a coefficient of transmissiont j given by

t j = e−σ j δx/2. (40)

These coefficients of transmission were then used to compute a new set of coefficients of
conductivityσ (adjusted) with the relation linking theσ defined earlier, that is,

σ j =
t j+1/2− 1

t j

1x
, (41)

where the reader is reminded thatj has now its origin at the vacuum-absorbing layer
interface and increases in the absorbing layer. Theseσ j were used to run another case
named “PML-σ (adjusted)” and were also used to compute the coefficients for the hybrid
algorithm case. A case using the one-way Sommerfeld ABC was also run as a reference.

The results are given in Fig. 1 for all four boundary conditions (one-way, PML, PML-
σ (adjusted), hybrid) forn = 1, 2, 3, and 4. For all values ofn, the adjustment of theσ gives
better results than the PML without adjustment, and the hybrid algorithm considerably
reduces the amount of reflection in comparison with the others.
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FIG. 1. Coefficient of reflection as a function of wavelength obtained for four ABCs withn = 1, 2, 3, 4
(n has no significance for the one-way ABC).

5.2. Coefficients of Reflection in 2D

We have measured the coefficient of reflection for a pulse of shape given by the Harris
function

H(t) =
{

10− 15 cos(2πLt)+ 6 cos(4πLt)− cos(6πLt)
32 when 0< t < L/c

0 otherwise,
(42)

wherec, the wave speed, was normalized to 1, and whereL, the support of the function,
was given the value 50δx. The size of the test domain was 100δx∗200δy with an additional
surrounding absorbing layer of thickness 8δx. Here,δx = δy = 1. A computation on a
reference grid of size 200δx∗200δy was also performed. Let Ez be the field computed on
the test grid and Ezr the field computed on the reference grid. The initial signal on both
grids was introduced so that Ez(25,100)= Ezr(100,100)= H(t). The time stepδt was set to
0.5δx, and the simulation was stopped att = 200δt = 100. Then the coefficient of reflection
was computed on a grid 76*201 by R(0:75, 0:200)=Ez(0:75, 0:200)−Ezr(100:175, 0:200).
The calculations were made for the PML, the PML-σ (adjusted), and the hybrid ABCs, using,
in the direction transverse to the absorbing boundary, the same coefficients as those used for
the 1-d numerical tests. The results at the boundary R(0, 0:200) are given in Fig. 2 forn = 1,
2, 3, and 4. Except for the casen = 1 where the PML-σ (adjusted) gives a smaller amount
of reflection than the hybrid ABC, the qualitative result found in the 1-d case, which is that
the hybrid ABC gives better results than the PML(σ adjusted or not), is obtained again.
3D plots of R(0:75, 0:200) are given in Fig. 3 (second-order Engquist and Majda, given for
reference), Fig. 4 (PML), Fig. 5 (PML-σ (adjusted)), and Fig. 6 (hybrid), all forn = 2. The
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FIG. 2. Coefficients of reflection at the boundary given by the PML, PML-σ (adjusted), and hybrid ABCs.

FIG. 3. Reflected signal (in % of the maximum amplitude of the incident pulse measured at the same time)
given by the second-order Engquist and Majda ABC.

FIG. 4. Reflected signal (in % of the maximum amplitude of the incident pulse measured at the same time)
given by PML ABC for an 8-cell absorbing layer withn = 2.
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FIG. 5. Reflected signal (in % of the maximum amplitude of the incident pulse measured at the same time)
given by the PML-σ (adjusted) ABC for an 8-cell absorbing layer withn = 2.

numerical reflection due to the PML ABC, as mentioned by previous authors [1, 6], in the
form of a front propagating normally to the boundary, is easy to identify in Fig. 4, while it
can be seen in Fig. 5 and Fig. 6 that it is well damped using the PML-σ (adjusted) ABC or
the hybrid ABC, which gives the best results of all.

6. CONCLUSION

We have presented a new absorbing boundary condition that has the features of both
one-way ABC and PML ABC. Numerical tests show that it yields better results than a PML
ABC under the same conditions (same thickness of the absorbing layer and same fall-off
of the incident wave amplitude in the layer). This work is still somewhat preliminary, and
a full mathematical analysis giving the optimized set of absorbing parameters (tj ) in the
layer is needed. Also, a possible improvement may be to take the second-order Engquist
and Majda algorithm as the limit of the hybrid algorithm for absorption in one cell, instead
of the first-order one, as done in this paper. This implies the addition of a coefficient
ξ , in Ez = Ezx+ ξEzy, to be determined. Whether such a modification will improve the
algorithm and is worthwhile are open questions. This hybrid ABC has been implemented
in the code EMI2D developed at Ecole Polytechnique (Palaiseau, France) by J. C. Adam,
A. Héron, and the author (used for laser-plasma interaction studies).

FIG. 6. Reflected signal (in % of the maximum amplitude of the incident pulse measured at the same time)
given by the hybrid ABC for an 8-cell absorbing layer withn = 2.
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APPENDIX: HEAVISIDE STEP ANALYSIS

We consider the discretized wave equation

Ei+1
j = αEi

j + β1Bi+1/2
j+1/2− β2Bi+1/2

j−1/2. (A.1)

If we consider the propagation of a Heaviside step of amplitudeH traveling forward, we
do not know the details of the response of the system for any set (α, β1, β2) but we know
from the properties of the wave equation that in vacuum, after an infinite time, all the values
must have exactly relaxed to the valueH for the magnetic fieldB and−H for the magnetic
field E (we haveE = −B for waves traveling forward), giving the relation (true after an
infinite time)

−H = −αH + β1H − β2H, (A.2)

and finally

α = 1+ β1− β2. (A.3)

The same analysis with waves traveling backward gives

α = 1− β1+ β2. (A.4)

ACKNOWLEDGMENTS

The author thanks J. C. Adam, W. Fawley, A. Friedman, A. H´eron, and E. Sonnendrucker for many useful
discussions and comments.

REFERENCES
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